GENERATE_SERIES
import FunctionDescription from '@site/src/components/FunctionDescription';
Generates a dataset starting from a specified point, ending at another specified point, and optionally with an incrementing value. The GENERATE_SERIES function works with the following data types:
- Integer
- Date
- Timestamp
Analyze Syntax
func.generate_series(<start>, <stop>[, <step_interval>])
Analyze Examples
func.generate_series(1, 10, 2);
generate_series|
---------------+
1|
3|
5|
7|
9|
SQL Syntax
GENERATE_SERIES(<start>, <stop>[, <step_interval>])
Arguments
Argument | Description |
---|---|
start | The starting value, representing the first number, date, or timestamp in the sequence. |
stop | The ending value, representing the last number, date, or timestamp in the sequence. |
step_interval | The step interval, determining the difference between adjacent values in the sequence. For integer sequences, the default value is 1. For date sequences, the default step interval is 1 day. For timestamp sequences, the default step interval is 1 microsecond. |
Note: When dealing with functions like GENERATE_SERIES and RANGE, a key distinction lies in their boundary traits. GENERATE_SERIES is bound by both the left and right sides, while RANGE is bound on the left side only. For example, utilizing RANGE(1, 11) is equivalent to GENERATE_SERIES(1, 10).
Return Type
Returns a list containing a continuous sequence of numeric values, dates, or timestamps from start to stop.
SQL Examples
SQL Examples 1: Generating Numeric, Date, and Timestamp Data
SELECT * FROM GENERATE_SERIES(1, 10, 2);
generate_series|
---------------+
1|
3|
5|
7|
9|
SELECT * FROM GENERATE_SERIES('2023-03-20'::date, '2023-03-27'::date);
generate_series|
---------------+
2023-03-20|
2023-03-21|
2023-03-22|
2023-03-23|
2023-03-24|
2023-03-25|
2023-03-26|
2023-03-27|
SELECT * FROM GENERATE_SERIES('2023-03-26 00:00'::timestamp, '2023-03-27 12:00'::timestamp, 86400000000);
generate_series |
-------------------+
2023-03-26 00:00:00|
2023-03-27 00:00:00|
SQL Examples 2: Filling Query Result Gaps
This example uses the GENERATE_SERIES function and left join operator to handle gaps in query results caused by missing information in specific ranges.
CREATE TABLE t_metrics (
date Date,
value INT
);
INSERT INTO t_metrics VALUES
('2020-01-01', 200),
('2020-01-01', 300),
('2020-01-04', 300),
('2020-01-04', 300),
('2020-01-05', 400),
('2020-01-10', 700);
SELECT date, SUM(value), COUNT() FROM t_metrics GROUP BY date ORDER BY date;
date |sum(value)|count()|
----------+----------+-------+
2020-01-01| 500| 2|
2020-01-04| 600| 2|
2020-01-05| 400| 1|
2020-01-10| 700| 1|
To close the gaps between January 1st and January 10th, 2020, use the following query:
SELECT t.date, COALESCE(SUM(t_metrics.value), 0), COUNT(t_metrics.value)
FROM generate_series(
'2020-01-01'::Date,
'2020-01-10'::Date
) AS t(date)
LEFT JOIN t_metrics ON t_metrics.date = t.date
GROUP BY t.date ORDER BY t.date;
date |coalesce(sum(t_metrics.value), 0)|count(t_metrics.value)|
----------+---------------------------------+----------------------+
2020-01-01| 500| 2|
2020-01-02| 0| 0|
2020-01-03| 0| 0|
2020-01-04| 600| 2|
2020-01-05| 400| 1|
2020-01-06| 0| 0|
2020-01-07| 0| 0|
2020-01-08| 0| 0|
2020-01-09| 0| 0|
2020-01-10| 700| 1|
Last modified June 11, 2024 at 9:00 PM EST: clean up cautions and notes (d4a1b9a)